Nathan Jacobs

Dept. of Computer Science & Engineering McKelvey School of Engineering Washington University in St. Louis 1 Brookings Drive, St. Louis, MO 63130-4899 jacobsn@wustl.edu https://jacobsn.github.io/ https://mvrl.cse.wustl.edu/ 0000-0002-4242-8967 (ORCID)

Areas of Expertise

Computer Vision, Deep Learning, Remote Sensing, Medical Imaging, Multimodal Integration

Contents

1	Education	1
2	Awards	2
3	Publications	3
4	Funding	12
5	Talks	16
6	Service	19
7	Teaching and Mentoring	22

1 Education

2005-2010	Ph.D. in Computer Science	Washington University in St. Louis
	Adviser: Robert Pless, Ph.D.	
	Thesis: Calibrating and Using the Global Networ	k of Outdoor Webcams
1995–1999	B.S. in Computer Science (Minor in Mathematics Summa Cum Laude with Honors	University of Missouri

Appointments and Affiliations

Professor (with Tenure)	Dept. of Computer Science & Engineering, Washington University
Jul 2022–	St. Louis, MO
Affiliated Faculty	Division of Computational & Data Sciences, Washington University
Jul 2022–	St. Louis, MO
Affiliated Faculty	Imaging Science Program, Washington University
Jul 2022–	St. Louis, MO
Professor (with Tenure)	Dept. of Computer Science, University of Kentucky
2021–2022	Lexington, KY

Director of Graduate Studies (Data S	Science) Dept. of Computer Science, University of Kentucky
2020–2022	Lexington, KY
Member	Institute for Biomedical Informatics, University of Kentucky
2017–2022	Lexington, KY
Associate Professor (with Tenure)	Dept. of Computer Science, University of Kentucky
2016–2021	Lexington, KY
Co-Department Chair (interim)	Dept. of Computer Science, University of Kentucky
2019–2020	Lexington, KY
Affiliated Faculty	Center for Visualization and Virtual Environments, University of Kentucky
2010–2019	Lexington, KY
Visiting Research Scientist (sabbatic 2017–2018	al)Orbital Insight, Inc.Mountain View, CA
Assistant Professor	Dept. of Computer Science, University of Kentucky
2010–2016	Lexington, KY
Computer Vision Research Intern	ObjectVideo, Inc.
2008 (May–Aug)	Reston, VA
Graduate Research Assistant	Dept. of Computer Science & Engineering, Washington University
2005–2010	St. Louis, MO

2 Awards

- Highlighted Reviewer Recognition (top 8%) [ICLR 2022]
- Outstanding Reviewer Recognition [BMVC 2021]
- Outstanding Reviewer Recognition (top 10%) [NeurIPS 2020]
- Outstanding Reviewer Recognition [ICCV 2019]
- University of Kentucky, College of Engineering Dean's Award for Excellence in Research [2018]
- Google Faculty Research Award [2018]
- Outstanding Reviewer Recognition [CVPR 2017]
- National Science Foundation CAREER Award [2016]
- Google Faculty Research Award [2016]
- Best Student Paper Award at Applied Imagery Pattern Recognition [2009]
- Ph.D. Forum Prize at the ACM/IEEE International Conference on Distributed Smart Cameras [2009]
- Best Talk Award for the Doctoral Student Seminar, Department of Computer Science, the Washington University in St. Louis, [Fall 2006]

3 Publications

Journal Articles

- [1] G. Liang, C. Greenwell, Y. Zhang, X. Xing, X. Wang, R. Kavuluru, and N. Jacobs, "Contrastive cross-modal pre-training: A general strategy for small sample medical imaging," *IEEE Journal of Biomedical and Health Informatics*, vol. 26, 4 Apr. 2022, Impact factor: 5.223, ISSN: 2168-2184. DOI: 10.1109/JBHI.2021. 3110805.
- [2] G. Liang, H. Ganesh, D. Steffe, L. Liu, N. Jacobs, and J. Zhang, "Development of cnn models for the enteral feeding tube positioning assessment on a small scale data set," *BMC Medical Imaging*, vol. 22, Mar. 2022, ISSN: 1471-2342. DOI: 10.1186/s12880-022-00766-w.
- [3] R. Padilha, T. Salem, S. Workman, F. A. Andaló, A. Rocha, and N. Jacobs, "Content-based detection of temporal metadata manipulation," *IEEE Transactions on Information Forensics and Security*, pp. 1316–1327, Mar. 2022. DOI: 10.1109/TIFS.2022.3159154.
- [4] S.-C. Lin, Y. Su, G. Liang, Y. Zhang, N. Jacobs, and Y. Zhang, "Estimating cluster masses from SDSS multiband images with transfer learning," *Monthly Notices of the Royal Astronomical Society (MNRAS)*, vol. 512, pp. 3885–3894, 3 Mar. 2022, Impact factor: 5.287. DOI: 10.1093/mnras/stac725.
- [5] M. U. Rafique, J. Zhu, and N. Jacobs, "Automatic segmentation of sinkholes using a convolutional neural network," *Earth and Space Science*, p. 19, Dec. 2021, Impact factor: 3.138. DOI: 10.1002/essoar. 10509794.1.
- [6] D. Tuia, R. Roscher, J. D. Wegner, N. Jacobs, X. X. Zhu, and G. Camps-Valls, "Towards a collective agenda on ai for earth science data analysis," *IEEE Geoscience and Remote Sensing Magazine*, vol. 9, no. 2, pp. 88–104, Jun. 2021, Impact factor: 8.225. DOI: 10.1109/MGRS.2020.3043504.
- [7] J. Zhu, A. Nolte, N. Jacobs, and M. Ye, "Machine learning in identifying karst sinkholes from LiDAR-derived topographic depressions in the Bluegrass region of Kentucky," *Journal of Hydrology*, Sep. 2020, Impact factor: 4.405. DOI: 10.1016/j.jhydrol.2020.125049.
- [8] Y. Su, Y. Zhang, G. Liang, J. ZuHone, D. Barnes, N. Jacobs, M. Ntampaka, W. Forman, P. Nulsen, R. Kraft, and C. Jones, "A deep learning view of the census of galaxy clusters in IllustrisTNG," *Monthly Notices of the Royal Astronomical Society (MNRAS)*, Sep. 2020, Impact factor: 5.356. DOI: 10.1093/mnras/staa2690.
- [9] T. C. Hammond, X. Xing, C. Wang, D. Ma, K. Nho, P. K. Crane, F. Elahi, D. A. Ziegler, G. Liang, Q. Cheng, L. M. Yanckello, N. Jacobs, and A.-L. Lin, "Beta-amyloid and tau drive early Alzheimer's disease decline while glucose hypometabolism drives late decline," *Communications Biology*, vol. 3, no. 1, p. 352, Jul. 2020, Impact factor: 6.268. DOI: 10.1038/s42003-020-1079-x.
- [10] X. Wang, G. Liang, Y. Zhang, H. Blanton, Z. Bessinger, and N. Jacobs, "Inconsistent performance of deep learning models on mammogram classification," *Journal of the American College of Radiology*, Jun. 2020, Impact factor: 3.785. DOI: 10.1016/j.jacr.2020.01.006.
- [11] R. V. Maretto, L. M. G. Fonseca, N. B. Jacobs, T. S. Körting, H. N. Bendini, and L. L. Parente, "Spatio-temporal deep learning approach to map deforestation in Amazon rainforest," *IEEE Geoscience and Remote Sensing Letters*, vol. 18, no. 5, pp. 771–775, Apr. 2020, Impact factor: 3.534. DOI: 10.1109/LGRS.2020.2986407.
- [12] H. Hamraz, N. B. Jacobs, M. A. Contreras, and C. H. Clark, "Deep Learning for Conifer/Deciduous Classification of Airborne LiDAR 3D Point Clouds Representing Individual Trees," *ISPRS Journal of Photogrammetry and Remote Sensing*, vol. 158, pp. 219–230, Dec. 2019, Impact factor: 6.946, ISSN: 0924-2716. DOI: 10.1016/j.isprsjprs.2019.10.011.
- [13] R. P. Mihail, G. Liang, and N. Jacobs, "Automatic hand skeletal shape estimation from radiographs," *IEEE Transactions on NanoBioscience*, vol. 18, no. 3, pp. 296–305, Apr. 2019, Impact factor: 1.927. DOI: 10.1109/TNB.2019.2911026.

- [14] H. Sajid, N. Jacobs, and S.-c. S. Cheung, "Motion and appearance based background subtraction for freely moving cameras," *Signal Processing: Image Communication*, 2019, Impact factor: 2.814. DOI: 10.1016/j. image.2019.03.003.
- [15] X. Zhang, Y. Zhang, E. Han, N. Jacobs, Q. Han, X. Wang, and J. Liu, "Classification of whole mammogram and tomosynthesis images using deep convolutional neural networks," *IEEE Transactions on NanoBioscience*, Jul. 2018, Impact factor: 1.927. DOI: 10.1109/TNB.2018.2845103.
- [16] N. Jacobs, S. Workman, and R. Souvenir, "Cloudmaps from static ground-view video," Image and Vision Computing (IVC), vol. 52, pp. 154–166, Aug. 2016, Impact factor: 1.766. DOI: 10.1016/j.imavis.2016.05.013.
- [17] H. Sajid, S.-c. S. Cheung, and N. Jacobs, "Appearance based background subtraction for PTZ cameras," *Signal Processing: Image Communication*, Jul. 2016, Impact factor: 1.602. DOI: 10.1016/j.image.2016.07.008.
- [18] M. T. Islam, C. Greenwell, R. Souvenir, and N. Jacobs, "Large-scale geo-facial image analysis," EURASIP Journal on Image and Video Processing (JIVP), vol. 2015, no. 1, pp. 1–14, Jun. 2015, Impact factor: 1.060. DOI: 10.1186/s13640-015-0070-9.
- [19] S. Workman, R. Souvenir, and N. Jacobs, "Scene shape estimation from multiple partly cloudy days," *Computer Vision and Image Understanding (CVIU)*, pp. 116–129, Apr. 2015, Impact factor: 1.54. DOI: 10.1016/j.cviu.2014.10.002.
- [20] N. Jacobs, A. Abrams, and R. Pless, "Two cloud-based cues for estimating scene structure and camera calibration," *IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)*, vol. 35, no. 10, pp. 2526–2538, Aug. 2013, Impact factor: 5.694, ISSN: 0162-8828. DOI: 10.1109/TPAMI.2013.55.
- [21] N. Jacobs and R. Pless, "Time scales in video surveillance," *IEEE Transactions on Circuits and Systems for Video Technology (CSVT)*, vol. 18, no. 8, pp. 1106–1113, Aug. 2008, Impact factor: 2.615. DOI: 10.1109/TCSVT.2008.928215.

Patents

- [1] N. Jacobs and S. Workman, *Network architecture for generating a labeled overhead image*, US Patent App. 16/045,606, Jan. 2020.
- [2] J. A. G. Whitney, J. T. Fessler, Z. C. N. Kratzer, N. B. Jacobs, A. M. Whitney, et al., Method and system for estimating error in predicted distance using RSSI signature, Jan. 2016.

Book Chapters

[1] R. P. Mihail, N. Jacobs, J. Goldsmith, and K. Lohr, "Using visual analytics to inform rheumatoid arthritis patient choices," in *Serious Games Analytics*, ser. Advances in Game-Based Learning, C. S. Loh, Y. Sheng, and D. Ifenthaler, Eds., Springer International Publishing, 2015, pp. 211–231, ISBN: 978-3-319-05833-7. DOI: 10.1007/978-3-319-05834-4_9.

Refereed Conference Papers

- [1] E. Xing, X. Xing, L. Liu, N. Jacobs, Y. Qu, and G. Liang, "Neural network decision-making criteria consistency analysis via inputs sensitivity," in *International Conference on Pattern Recognition (ICPR 2022)*, Aug. 2022.
- [2] S. Workman, M. U. Rafique, H. Blanton, and N. Jacobs, "Revisiting near/remote sensing with geospatial attention," in *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, Acceptance rate: 25.33%, Jun. 2022.

- [3] X. Xing, G. Liang, Y. Zhang, S. Khanal, A.-L. Lin, and N. Jacobs, "ADViT: Vision transformer on multimodality pet images for alzheimer disease diagnosis," in *IEEE International Symposium on Biomedical Imaging* (*ISBI*), Mar. 2022.
- [4] H. Blanton, S. Workman, and N. Jacobs, "A structure-aware method for direct pose estimation," in *IEEE Winter Conference on Applications of Computer Vision (WACV)*, Jan. 2022.
- [5] Y. Zhang, G. Liang, and N. Jacobs, "Dynamic feature alignment for semi-supervised domain adaptation," in *British Machine Vision Conference (BMVC)*, Nov. 2021.
- [6] G. Liang, X. Xing, L. Liu, Y. Zhang, Q. Ying, A.-L. Lin, and N. Jacobs, "Alzheimer's disease classification using 2d convolutional neural networks," in *International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)*, Oct. 2021.
- [7] Q. Ying, X. Xing, L. Liu, A.-L. Lin, N. Jacobs, and G. Liang, "Multi-modal data analysis for Alzheimer's disease diagnosis: An ensemble model using imagery and genetic features," in *International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)*, Oct. 2021.
- [8] B. Brodie, S. Khanal, M. U. Rafique, C. Greenwell, and N. Jacobs, "Hierarchical probabilistic embeddings for multi-view image classification," in *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, Jul. 2021. DOI: 10.1109/IGARSS47720.2021.9554405.
- [9] D. Jones and N. Jacobs, "Intensity harmonization for airborne LiDAR," in *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, Jul. 2021. DOI: 10.1109/IGARSS47720.2021.9553605.
- [10] Y. Zhang, G. Liang, Y. Su, and N. Jacobs, "Multi-branch attention networks for classifying galaxy clusters," in *International Conference on Pattern Recognition (ICPR 2020)*, Acceptance rate: 28.47%, Jan. 2021. DOI: 10.1109/ICPR48806.2021.9412498.
- [11] A. Hadzic, G. Christie, J. Freeman, A. Dismer, S. Bullard, A. Greiner, N. Jacobs, and R. Mukherjee, "Estimating displaced populations from overhead," in *IEEE International Geoscience and Remote Sensing Symposium* (*IGARSS*), Sep. 2020. DOI: 10.1109/IGARSS39084.2020.9324617.
- [12] G. Liang, Y. Zhang, X. Wang, and N. Jacobs, "Improved trainable calibration method for neural networks," in *British Machine Vision Conference (BMVC)*, Sep. 2020.
- [13] M. U. Rafique, H. Blanton, N. Snavely, and N. Jacobs, "Generative Appearance Flow: A hybrid approach for outdoor view synthesis," in *British Machine Vision Conference (BMVC)*, Sep. 2020.
- [14] H. Blanton, S. Grate, and N. Jacobs, "Surface modeling for airborne LiDAR," in *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, (oral), 2020. DOI: 10.1109/IGARSS39084.2020.9323522.
- [15] G. Liang, X. Wang, Y. Zhang, and N. Jacobs, "Weakly-supervised self-training for breast cancer localization," in *International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)*, (oral), 2020. DOI: 10.1109/EMBC44109.2020.9176617.
- [16] T. Salem, S. Workman, and N. Jacobs, "Learning a dynamic map of visual appearance," in *IEEE Confer*ence on Computer Vision and Pattern Recognition (CVPR), Acceptance rate: 25%, 2020. DOI: 10.1109/ CVPR42600.2020.01245.
- [17] S. Workman and N. Jacobs, "Dynamic traffic modeling from overhead imagery," in *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, Acceptance rate: 5.7% (oral), 2020. DOI: 10.1109/CVPR42600.2020.01233.
- [18] S. Workman, M. U. Rafique, H. Blanton, C. Greenwell, and N. Jacobs, "Single image cloud detection via multiimage fusion," in *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, (oral), 2020. DOI: 10.1109/IGARSS39084.2020.9323759.
- [19] Z. Bessinger and N. Jacobs, "A generative model of worldwide facial appearance," in *IEEE Winter Conference* on Applications of Computer Vision (WACV), (oral), 2019. DOI: 10.1109/WACV.2019.00172.

- [20] G. Liang, S. Fouladvand, J. Zhang, M. A. Brooks, N. Jacobs, and J. Chen, "GANai: Standardizing CT images using generative adversarial network with alternative improvement," in *IEEE International Conference on Healthcare Informatics (ICHI)*, 2019. DOI: 10.1109/ICHI.2019.8904763.
- [21] G. Liang, X. Wang, Y. Zhang, X. Xing, H. Blanton, T. Salem, and N. Jacobs, "Joint 2d-3d breast cancer classification," in *IEEE International Conference on Bioinformatics and Biomedicine (BIBM)*, Acceptance rate: 18% (oral), 2019. DOI: 10.1109/BIBM47256.2019.8983048.
- [22] M. U. Rafique and N. Jacobs, "Weakly supervised building segmentation from aerial images," in *IEEE Inter*national Geoscience and Remote Sensing Symposium (IGARSS), 2019. DOI: 10.1109/IGARSS.2019. 8898812.
- [23] T. Salem, C. Greenwell, H. Blanton, and N. Jacobs, "Learning to map nearly anything," in *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, (oral), 2019. DOI: 10.1109/IGARSS.2019.8900646.
- [24] W. Song, T. Salem, H. Blanton, and N. Jacobs, "Remote estimation of free-flow speeds," in *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, (oral), 2019. DOI: 10.1109/IGARSS.2019.8900286.
- [25] Y. Zhang, X. Wang, H. Blanton, G. Liang, X. Xing, and N. Jacobs, "2d convolutional neural networks for 3d digital breast tomosynthesis classification," in *IEEE International Conference on Bioinformatics and Biomedicine* (*BIBM*), Acceptance rate: 18% (oral), 2019. DOI: 10.1109/BIBM47256.2019.8983097.
- [26] C. Greenwell, S. Workman, and N. Jacobs, "What goes where: Predicting object distributions from above," in *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, 2018. DOI: 10.1109/IGARSS. 2018.8519251.
- [27] N. Jacobs, A. Kraft, M. U. Rafique, and R. D. Sharma, "A weakly supervised approach for estimating spatial density functions from high-resolution satellite imagery," in ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL), Acceptance rate: 22.5% (oral), 2018. DOI: 10.1145/3274895.3274934.
- [28] D. Jones, J. Bopaiah, F. Alghamedy, N. Jacobs, H. Weiss, W. A. D. Jong, and S. Ellingson, "Polypharmacology within the full kinome: A machine learning approach," in AMIA Informatics Summit, 2018.
- [29] R. P. Mihail and N. Jacobs, "Automatic hand skeletal shape estimation from radiographs," in *IEEE International Conference on Bioinformatics and Biomedicine (BIBM)*, Acceptance rate: 19.6%, 2018. DOI: 10.1109/BIBM.2018.8621196.
- [30] T. Salem, M. Zhai, S. Workman, and N. Jacobs, "A multimodal approach to mapping soundscapes," in *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, 2018. DOI: 10.1109/IGARSS.2018. 8517977.
- [31] S. Schulter, M. Zhai, N. Jacobs, and M. Chandraker, "Learning to look around objects for top-view representations of outdoor scenes," in *European Conference on Computer Vision (ECCV)*, Acceptance rate: 31.8%, 2018. DOI: 10.1007/978-3-030-01267-0_48.
- [32] W. Song, S. Workman, A. Hadzic, R. Souleyrette, E. Green, M. Chen, X. Zhang, and N. Jacobs, "FARSA: Fully automated roadway safety assessment," in *IEEE Winter Conference on Applications of Computer Vision* (WACV), 2018. DOI: 10.1109/WACV.2018.00063.
- [33] M. Zhai, T. Salem, C. Greenwell, S. Workman, R. Pless, and N. Jacobs, "Learning geo-temporal image features," in *British Machine Vision Conference (BMVC)*, Acceptance rate: 29.5%, 2018.
- [34] N. Vo, N. Jacobs, and J. Hays, "Revisiting IM2GPS in the deep learning era," in *IEEE International Conference* on Computer Vision (ICCV), Acceptance rate: 28.9%, 2017. DOI: 10.1109/ICCV.2017.286.
- [35] S. Workman, R. Souvenir, and N. Jacobs, "Understanding and mapping natural beauty," in *IEEE International Conference on Computer Vision (ICCV)*, Acceptance rate: 28.9%, 2017. DOI: 10.1109/ICCV.2017.596.

- [36] S. Workman, M. Zhai, D. Crandall, and N. Jacobs, "A unified model for near and remote sensing," in *IEEE International Conference on Computer Vision (ICCV)*, Acceptance rate: 28.9%, 2017. DOI: 10.1109/ICCV. 2017.293.
- [37] M. Zhai, Z. Bessinger, S. Workman, and N. Jacobs, "Predicting ground-level scene layout from aerial imagery," in *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, Acceptance rate: 29.2%, 2017. DOI: 10.1109/CVPR.2017.440.
- [38] X. Zhang, Y. Zhang, E. Han, N. Jacobs, Q. Han, X. Wang, and J. Liu, "Whole mammogram image classification with convolutional neural networks," in *IEEE International Conference on Bioinformatics and Biomedicine* (*BIBM*), Acceptance rate: 19%, 2017. DOI: 10.1109/BIBM.2017.8217738.
- [39] R. Baltenberger, M. Zhai, C. Greenwell, S. Workman, and N. Jacobs, "A fast method for estimating transient scene properties," in *IEEE Winter Conference on Applications of Computer Vision (WACV)*, Acceptance rate: 42.3%, 2016, pp. 1–8. DOI: 10.1109/WACV.2016.7477713.
- [40] Z. Bessinger and N. Jacobs, "Quantifying curb appeal," in *IEEE International Conference on Image Processing* (*ICIP*), Acceptance rate: 45%, 2016. DOI: 10.1109/ICIP.2016.7533189.
- [41] Z. Bessinger, C. Stauffer, and N. Jacobs, "Who goes there? Approaches to mapping facial appearance diversity," in ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL), 2016. DOI: 10.1145/2996913.2996997.
- [42] R. P. Mihail, S. Workman, Z. Bessinger, and N. Jacobs, "Sky segmentation in the wild: An empirical study," in *IEEE Winter Conference on Applications of Computer Vision (WACV)*, Acceptance rate: 42.3%, 2016, pp. 1–6. DOI: 10.1109/WACV.2016.7477637.
- [43] T. Salem, S. Workman, M. Zhai, and N. Jacobs, "Analyzing human appearance as a cue for dating images," in *IEEE Winter Conference on Applications of Computer Vision (WACV)*, Acceptance rate: 42.3%, 2016, pp. 1–8. DOI: 10.1109/WACV.2016.7477678.
- [44] S. Workman, M. Zhai, and N. Jacobs, "Horizon lines in the wild," in *British Machine Vision Conference* (*BMVC*), Acceptance rate: 39.4%, 2016.
- [45] M. Zhai, S. Workman, and N. Jacobs, "Camera geo-calibration using an MCMC approach," in *IEEE Interna*tional Conference on Image Processing (ICIP), Acceptance rate: 45%, 2016. DOI: 10.1109/ICIP.2016. 7532905.
- [46] M. Zhai, S. Workman, and N. Jacobs, "Detecting vanishing points using global image context in a non-Manhattan world," in *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, Acceptance rate: 29.9%, 2016. DOI: 10.1109/CVPR.2016.610.
- [47] M. T. Islam, S. Workman, and N. Jacobs, "Face2GPS: Estimating geographic location from facial features," in *IEEE International Conference on Image Processing (ICIP)*, Acceptance rate: 45% (overall), 2015. DOI: 10.1109/ICIP.2015.7351072.
- [48] C. Murdock, N. Jacobs, and R. Pless, "Building dynamic cloud maps from the ground up," in *IEEE International Conference on Computer Vision (ICCV)*, Acceptance rate: 30.3%, 2015, pp. 1–9. DOI: 10.1109/ICCV.2015.85.
- [49] S. Workman, C. Greenwell, M. Zhai, R. Baltenberger, and N. Jacobs, "DeepFocal: A method for direct focal length estimation," in *IEEE International Conference on Image Processing (ICIP)*, Acceptance rate: 45% (overall), 2015. DOI: 10.1109/ICIP.2015.7351024.
- [50] S. Workman, R. Souvenir, and N. Jacobs, "Wide-area image geolocalization with aerial reference imagery," in *IEEE International Conference on Computer Vision (ICCV)*, Acceptance rate: 30.3%, 2015, pp. 1–9. DOI: 10.1109/ICCV.2015.451.
- [51] M. T. Islam, S. Workman, H. Wu, R. Souvenir, and N. Jacobs, "Exploring the geo-dependence of human face appearance," in *IEEE Winter Conference on Applications of Computer Vision (WACV)*, Acceptance rate: 40%, 2014, pp. 1042–1049. DOI: 10.1109/WACV.2014.6835989.

- [52] N. Jacobs, J. King, D. Bowers, and R. Souvenir, "Estimating cloud maps from outdoor image sequences," in *IEEE Winter Conference on Applications of Computer Vision (WACV)*, Acceptance rate: 40%, 2014, pp. 961– 968. DOI: 10.1109/WACV.2014.6836000.
- [53] R. P. Mihail, G. Blomquist, and N. Jacobs, "A CRF approach to fitting a generalized hand skeleton model," in *IEEE Winter Conference on Applications of Computer Vision (WACV)*, Acceptance rate: 40%, 2014, pp. 409– 416. DOI: 10.1109/WACV.2014.6836070.
- [54] F. Shi, M. Zhai, D. Duncan, and N. Jacobs, "MPCA: EM-based PCA for mixed-size image datasets," in *IEEE International Conference on Image Processing (ICIP)*, Acceptance rate: 40%, 2014, pp. 1807–1811. DOI: 10.1109/ICIP.2014.7025362.
- [55] A. Whitney, J. Fessler, J. Parker, and N. Jacobs, "Received signal strength indication signature for passive UHF tags," in *IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)*, 2014, pp. 1183–1187. DOI: 10.1109/AIM.2014.6878242.
- [56] S. Workman, R. P. Mihail, and N. Jacobs, "A Pot of Gold: Rainbows as a calibration cue," in *European Confer*ence on Computer Vision (ECCV), Acceptance rate: 25%, 2014, pp. 820–835. DOI: 10.1007/978-3-319-10602-1_53.
- [57] M. Zhai, F. Shi, D. Duncan, and N. Jacobs, "Covariance-based PCA for multi-size data," in *International Conference on Pattern Recognition (ICPR)*, Acceptance rate: 56.2%, 2014, pp. 1603–1608. DOI: 10.1109/ICPR. 2014.284.
- [58] N. Jacobs, M. T. Islam, and S. Workman, "Cloud motion as a calibration cue," in *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, Acceptance rate: 26.2%, 2013, pp. 1344–1351. DOI: 10.1109/ CVPR.2013.177.
- [59] N. Jacobs, S. Workman, and R. Souvenir, "Scene geometry from several partly cloudy days," in *ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC)*, 2013, pp. 1–6. DOI: 10.1109/ICDSC. 2013.6778227.
- [60] R. P. Mihail, J. Goldsmith, N. Jacobs, and J. Jaromczyk, "Teaching graphics for games using Microsoft XNA," in *International Conference on Computer Games (CGAMES)*, Best Student Paper Award (runner-up), 2013, pp. 36–40. DOI: 10.1145/2538862.2538898.
- [61] M. Dixon, A. Abrams, N. Jacobs, and R. Pless, "On analyzing video with very small motions," in *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, Acceptance rate: 26.4%, 2011, pp. 1–8. DOI: 10.1109/CVPR.2011.5995703.
- [62] N. Jacobs, B. Bies, and R. Pless, "Using cloud shadows to infer scene structure and camera calibration," in *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, Acceptance rate: 4.5% (oral), Jun. 2010, pp. 1102–1109. DOI: 10.1109/CVPR.2010.5540093.
- [63] N. Jacobs, S. Schuh, and R. Pless, "Compressive sensing and differential image motion estimation," in *IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)*, Acceptance rate = 10% (oral), Mar. 2010, pp. 718–721. DOI: 10.1109/ICASSP.2010.5495053.
- [64] A. Abrams, N. Fridrich, N. Jacobs, and R. Pless, "Participatory integration of live webcams into GIS," in *International Conference on Computing for Geospatial Research and Applications (COM.GEO)*, (oral), 2010, pp. 1–8. DOI: 10.1145/1823854.1823867.
- [65] N. Jacobs, W. Burgin, N. Fridrich, A. Abrams, K. Miskell, B. H. Braswell, A. D. Richardson, and R. Pless, "The global network of outdoor webcams: Properties and applications," in ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL), Acceptance rate: 20.9%, Nov. 2009, pp. 111–120. DOI: 10.1145/1653771.1653789.
- [66] M. Dixon, N. Jacobs, and R. Pless, "An efficient system for vehicle tracking in multi-camera networks," in ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC), Sep. 2009, pp. 1–8. DOI: 10. 1109/ICDSC.2009.5289383.

- [67] N. Jacobs, S. Satkin, N. Roman, R. Speyer, and R. Pless, "Geolocating static cameras," in *IEEE International Conference on Computer Vision (ICCV)*, Acceptance rate: 23%, Oct. 2007, pp. 1–6. DOI: 10.1109/ICCV. 2007.4408995.
- [68] N. Jacobs, N. Roman, and R. Pless, "Consistent temporal variations in many outdoor scenes," in *IEEE Confer*ence on Computer Vision and Pattern Recognition (CVPR), Acceptance rate: 23.4%, Jun. 2007, pp. 1–6. DOI: 10.1109/CVPR.2007.383258.
- [69] T. Anderson, A. Hussam, B. Plummer, and N. Jacobs, "Pie charts for visualizing query term frequency in search results," English, in *International Conference on Asian Digital Libraries (ICADL)*, 2002. DOI: 10.1007/3-540-36227-4_52.
- [70] A. Hussam, T. Anderson, N. Jacobs, D. Eckhoff, A. Merayyan, and Y. Yang, "Semantic highlighting: Enhancing search engine display and web document interactivity," in *IFIP Conference on Human-Computer Interaction (INTERACT)*, Sep. 1999. DOI: 10.1007/3-540-36227-4_52.

Workshop Papers

- [1] S. Khanal, B. Brodie, X. Xing, A.-L. Lin, and N. Jacobs, "Causality for inherently explainable transformers: Cat-xplain," in XAI4CV: Explainable Artificial Intelligence for Computer Vision (IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops), Acceptance rate: 15% (spotlight), Jun. 2022.
- [2] S. Khanal, J. Chen, N. Jacobs, and A.-L. Lin, "Alzheimer's disease classification using genetic data," in *Machine Learning and Artificial Intelligence in Bioinformatics and Medical Informatics (MABM)*, Dec. 2021.
- [3] M. U. Rafique, Y. Zhang, B. Brodie, and N. Jacobs, "Unifying guided and unguided outdoor image synthesis," in *New Trends in Image Restoration and Enhancement (IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*), Jun. 2021, pp. 776–785. DOI: 10.1109/CVPRW53098.2021.00087.
- [4] H. Blanton, C. Greenwell, S. Workman, and N. Jacobs, "Extending absolute pose regression to multiple scenes," in *Joint Workshop on Long-Term Visual Localization, Visual Odometry and Geometric and Learning-based SLAM (CVPR Workshop)*, 2020.
- [5] A. Hadzic, H. Blanton, W. Song, M. Chen, S. Workman, and N. Jacobs, "RasterNet: Modeling free-flow speed using lidar and overhead imagery," in *EARTHVISION: Large Scale Computer Vision for Remote Sensing Im*agery, Acceptance rate: 26%, 2020. DOI: 10.1109/CVPRW50498.2020.00112.
- [6] X. Xing, G. Liang, H. Blanton, M. U. Rafique, C. Wang, A.-L. Lin, and N. Jacobs, "Dynamic image for 3d MRI image Alzheimer's disease classification," in *ECCV Workshop on BioImage Computing (BIC)*, (oral), 2020.
- M. U. Rafique, H. Blanton, and N. Jacobs, "Weakly supervised fusion of multiple overhead images," in *IEEE/ISPRS Workshop: Large Scale Computer Vision for Remote Sensing (EARTHVISION)*, Acceptance rate: 23.5%, 2019. DOI: 10.1109/CVPRW.2019.00189.
- [8] Y. Zhang, G. Liang, T. Salem, and N. Jacobs, "Defense-PointNet: Protecting pointnet against adversarial attacks," in *The Next Frontier of Big Data From LiDAR Workshop (co-located with IEEE Big Data)*, 2019.
- [9] S. Workman and N. Jacobs, "On the location dependence of convolutional neural network features," in *IEEE/ISPRS Workshop: Looking from above: When Earth observation meets vision (EARTHVISION)*, Acceptance rate: 30%, 2015, pp. 1–9. DOI: 10.1109/CVPRW.2015.7301385.
- [10] C. Greenwell, S. Spurlock, R. Souvenir, and N. Jacobs, "GeoFaceExplorer: Exploring the geo-dependence of facial attributes," in ACM SIGSPATIAL International Workshop on Crowdsourced and Volunteered Geographic Information (GEOCROWD), 2014, pp. 32–37. DOI: 10.1145/2676440.2676443.
- [11] M. T. Islam, N. Jacobs, H. Wu, and R. Souvenir, "Images+Weather: Collection, validation, and refinement," in *IEEE CVPR Workshop on Ground Truth*, Acceptance rate: 67%, 2013, pp. 1–7.
- [12] C. Murdock, N. Jacobs, and R. Pless, "Webcam2Satellite: Estimating cloud maps from webcam imagery," in *IEEE Workshop on Applications of Computer Vision (WACV)*, Acceptance rate: 40%, 2013, pp. 214–221. DOI: 10.1109/WACV.2013.6475021.

- [13] A. Abrams, J. Tucek, N. Jacobs, and R. Pless, "LOST: Longterm observation of scenes (with tracks)," in *IEEE Workshop on Applications of Computer Vision (WACV)*, Acceptance rate: 44%, 2012, pp. 297–304. DOI: 10.1109/WACV.2012.6163032.
- [14] R. P. Mihail, N. Jacobs, and J. Goldsmith, "Real time gesture recognition with 2 Kinect sensors," in *International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV)*, 2012, pp. 1–7.
- [15] N. Jacobs, K. Miskell, and R. Pless, "Webcam geo-localization using aggregate light levels," in *IEEE Workshop on Applications of Computer Vision (WACV)*, (oral), 2011, pp. 132–138. DOI: 10.1109/WACV.2011. 5711494.
- [16] N. Jacobs, M. Dixon, S. Satkin, and R. Pless, "Efficient tracking of many objects in structured environments," in *IEEE ICCV Workshop on Visual Surveillance*, Oct. 2009, pp. 1161–1168. DOI: 10.1109/ICCVW.2009. 5457477.
- [17] N. Jacobs and R. Pless, "Calibrating and using the global network of outdoor webcams," in ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC), Winner PhD Forum Prize, Sep. 2009, pp. 1–2. DOI: 10.1109/ICDSC.2009.5289404.
- [18] N. Jacobs, W. Burgin, R. Speyer, D. Ross, and R. Pless, "Adventures in archiving and using three years of webcam images," in *IEEE CVPR Workshop on Internet Vision*, Jun. 2009, pp. 39–46. DOI: 10.1109/CVPRW. 2009.5204185.
- [19] N. Jacobs, R. Souvenir, and R. Pless, "Passive Vision: The global webcam imaging network," in *IEEE Applied Imagery and Pattern Recognition (AIPR)*, Best Student Paper, 2009, pp. 1–8. DOI: 10.1109/AIPR.2009. 5466314.
- [20] R. Pless, N. Jacobs, M. Dixon, R. Hartley, P. Baker, D. Brock, N. Cassimatis, and D. Perzanowski, "Persistence and Tracking: Putting vehicles and trajectories in context," in *IEEE Applied Imagery and Pattern Recognition* (AIPR), 2009. DOI: 10.1109/AIPR.2009.5466307.
- [21] N. Jacobs, M. Dixon, and R. Pless, "Location-specific transition distributions for tracking," in *IEEE Workshop on Motion and Video Computing (WMVC)*, Acceptance rate: 33.3%, Jan. 2008. DOI: 10.1109/WMVC.2008. 4544061.
- [22] N. Jacobs, N. Roman, and R. Pless, "Toward fully automatic geo-location and geo-orientation of static outdoor cameras," in *IEEE Workshop on Applications of Computer Vision (WACV)*, Acceptance rate: 33.3%, Jan. 2008, pp. 1–6. DOI: 10.1109/WACV.2008.4544040.
- [23] N. Jacobs and R. Pless, "Shape Background Modeling: The shape of things that came," in *IEEE Workshop on Motion and Video Computing (WMVC)*, Feb. 2007, pp. 1–6. DOI: 10.1109/WMVC.2007.35.
- [24] N. Jacobs and R. Pless, "Real-time constant memory visual summaries for surveillance," in ACM International Workshop on Visual Surveillance and Sensor Networks (VSSN), Oct. 2006. DOI: 10.1145/1178782.1178805.
- [25] M. Dixon, N. Jacobs, and R. Pless, "Finding minimal parameterizations of cylindrical image manifolds," in *IEEE CVPR Workshop on Perceptual Organization in Computer Vision (POCV)*, Jun. 2006, pp. 1–8. DOI: 10.1109/CVPRW.2006.82.

Abstracts

- [1] M. Chen, A. Hadzic, W. Song, and N. Jacobs, "Applications of deep machine learning to highway safety and usage assessment," in *Transportation Research Board Workshop (Sponsored by AED50)*, (oral), Jan. 2021.
- [2] G. Liang, Y. Su, S.-C. Lin, Y. Zhang, Y. Zhang, and N. Jacobs, "Optical wavelength guided self-supervised feature learning for galaxy cluster richness estimate," in *Workshop on Machine Learning and the Physical Sciences at the 34th Conference on Neural Information Processing Systems*, Dec. 2020.

- [3] G. Liang, Y. Zhang, and N. Jacobs, "Neural network calibration for medical imaging classification using DCA regularization," in *ICML 2020 workshop on Uncertainty and Robustness in Deep Learning (UDL)*, 2020.
- [4] C. Greenwell, S. Workman, and N. Jacobs, "Implicit land use mapping using social media imagery," in *IEEE Applied Imagery and Pattern Recognition (AIPR)*, (oral), 2019. DOI: 10.1109/AIPR47015.2019.9174570.
- [5] T. Hammond, X. Xing, N. Jacobs, and A.-L. Lin, "Phase-dependent importance of amyloid-beta, phosphorylatedtau, and hypometabolism in determining mild cognitive impairment and Alzheimer's disease: A machine learning study," in *Alzheimer's Disease Therapeutics: Alternatives to Amyloid*, 2019.
- [6] G. Liang, N. Jacobs, J. Liu, K. Luo, W. Owen, and X. Wang, "Translational relevance of performance of deep learning models on mammograms," in *SBI/ACR Breast Imaging Symposium*, 2019.
- [7] G. Liang, N. Jacobs, and X. Wang, "Training deep learning models as radiologists: Breast cancer classification using combined whole 2d mammography and full volume digital breast tomosynthesis," in *Radiological Society of North America (RSNA)*, (oral), 2019.
- [8] Y. Zhang, G. Liang, N. Jacobs, and X. Wang, "Unsupervised domain adaptation for mammogram image classification: A promising tool for model generalization," in *Conference on Machine Intelligence in Medical Imaging* (*CMIMI*), (oral), 2019.
- [9] J. Zhu, A. M. Nolte, N. Jacobs, and M. Ye, "Incorporating machine learning with LiDAR for delineating sinkholes," in *Kentucky Water Resources Annual Symposium*, 2019.
- [10] D. Jones, N. Jacobs, and S. Ellingson, "Learning deep feature representations for kinase polypharmacology," in *ACM Richard Tapia Celebration of Diversity in Computing Conference*, 2018.
- [11] G. Liang, X. Wang, and N. Jacobs, "Evaluating the publicly available mammography datasets for deep learning model training," in *SBI/ACR Breast Imaging Symposium*, 2018.
- [12] W. Song, T. Salem, N. Jacobs, and M. Johnson, "Detecting the presence of bird vocalizations in audio segments using a convolutional neural network architecture," in *International Symposium on Acoustic Communication by Animals*, 2017.
- [13] N. Jacobs, S. Workman, and M. Zhai, "Crossview convolutional networks," in *IEEE Applied Imagery and Pattern Recognition (AIPR)*, (oral), 2016. DOI: 10.1109/AIPR.2016.8010593.
- [14] J. D. Smith, R. Baltenberger, S. Workman, and N. Jacobs, "User-in-the-loop calibration and mensuration," in *National Conference on Undergraduate Research (NCUR)*, 2014.
- [15] X. Zhou, S. Workman, M. T. Islam, N. Jacobs, and J. Griffioen, "Cyber infrastructure for the VOEIS project," in *Symposium in the Mathematical, Statistical and Computer Sciences*, Best Student Presentation, 2013.
- [16] E. Welty, T. Pfeffer, S. O'Neel, and N. Jacobs, "Calving dynamics of the Columbia Glacier, AK (2000-2011 update)," in *Workshop on the Dynamics and Mass Budget of Arctic Glaciers*, 2012.
- [17] S. Workman, J. Knochelmann, N. Jacobs, D. S. White, and R. Hauer, "Registration and visualization of scientific aerial imagery at Kentucky Lake," in *Kentucky EPSCoR Conference*, 2012.
- [18] T. Milliman, K. Hufkins, I. Lavine, N. Jacobs, R. Pless, A. Richardson, and S. Frolking, "The PhenoCam Website: Adventures in "crowd-sourcing" data collection, distribution and analysis," in *American Geophysical Union Annual Meeting*, 2011.
- [19] P. Wang, S. Bhattacharyya, D. White, and N. Jacobs, "Visualization of Kentucky Lake," in *Kentucky EPSCoR Conference*, 2011.

Technical Reports

 A. Abrams, C. Hawley, K. Miskell, A. Stoica, N. Jacobs, and R. Pless, "Shadow estimation method for "the episolar constraint: Monocular shape from shadow correspondence"," *arXiv*, vol. preprint 1304.4112 [cs.CV], 2013. [2] N. Jacobs, S. Schuh, and R. Pless, "On unusual pixel shapes and image motion," Computer Science and Engineering, Washington University in St. Louis, MO, USA, Tech. Rep. WUCSE-2009-16, Jun. 2009.

Datasets

- [1] A. Abrams, J. Tucek, J. Little, N. Jacobs, and R. Pless, *LOST: Longterm observation of scenes (with tracks)*, http://mvrl.github.io/LOST.
- [2] M. T. Islam, C. Greenwell, and N. Jacobs, *GeoFaces: A large database of geolocated face patches*, http://mvrl.github.io/GeoFaces.
- [3] N. Jacobs, R. Pless, A. Abrams, and many others (see website for details), *AMOS: The archive of many outdoor scenes*, https://mvrl.github.io/AMOS.
- [4] P. Mihail, S. Workman, Z. Bessinger, and N. Jacobs, *SkyFinder: A large dataset of webcam images annotated with sky regions*, https://mvrl.github.io/SkyFinder.
- [5] M. U. Rafique, H. Blanton, and N. Jacobs, *Brooklyn Panorama Synthesis: A large dataset of panoramic images suitable for view synthesis evaluation*. https://mvrl.github.io/GAF.
- [6] T. Salem, S. Workman, M. Zhai, and N. Jacobs, *Cross-View Time (CVT)*, https://mvrl.github.io/ CVT.
- [7] T. Salem, S. Workman, M. Zhai, and N. Jacobs, *Face2Year: A large number of images extracted from highschool yearbooks*, https://mvrl.github.io/Face2Year.
- [8] S. Workman and N. Jacobs, Cross-View ScenicOrNot (CVSoN), https://mvrl.github.io/CVSoN.
- [9] S. Workman and N. Jacobs, Crossview USA (CVUSA): A large dataset containing millions of pairs of groundlevel and aerial/satellite images from across the United States. https://mvrl.github.io/CVUSA.
- [10] S. Workman, M. Zhai, and N. Jacobs, *Horizon Lines in the Wild (HLW): A large database of images with known horizon-line location*, http://mvrl.github.io/HLW.

4 Funding

Summary of funding to University of Kentucky as grants, contracts, or unrestricted gifts (Last updated: Nov 23, 2021):

- Total funding: \$10,203,326
 - by role:
 - * PI: \$4,234,003
 - * Co-PI/Co-I: \$5,969,323
 - by source:
 - * Federal: \$9,799,904 (inc. subcontracts on Federal awards)
 - * Industry: \$199,107
 - * Foundation: \$159,000
 - * Internal: \$45,315 (only includes competitively awarded funds)

This excludes a \$28,861,434 NIH CTSA grant, on which I don't deem my contribution essential to the success of this award.

Grants (awarded/active)

- WATCH: Wide Area Terrestrial Change Hypercube PI: Nathan Jacobs Sponsor: Kitware / Intelligence Advanced Research Projects Activity (IARPA) Total Award: \$305,941.48 (Phase 1); \$851,489 (Phase 1–3) Duration: 2020–2022 (Phase 1); 2020–2024 (Phase 1–3)
- NURI: Semantic Representations for Multi-Viewpoint Multimodal Geolocation
 PI: Nathan Jacobs
 Sponsor: Johns Hopkins University, Applied Physics Laboratory / National Geospatial-Intelligence Agency (NGA)
 Total Award: \$196,000 (base)
 Duration: 2020–2022
- Measures of Information via Representation Learning PI: Luis Sanchez-Giraldo Co-PI(s)/Co-I(s): Nathan Jacobs Sponsor: Department of Defense (DEPSCoR) Total Award: \$582,376 Duration: 2021–2024
- 4. R01: Ex vivo single molecule tools to analyze membrane receptor dynamics PI: Christopher Richards Co-PI(s)/Co-I(s): Jim Pauly, Ahmed Abdel-Latif, David Heidary, Nathan Jacobs Sponsor: National Institutes of Health (NIH) Total Award: \$1,510,803 Duration: 2021–2024
- UL1: Kentucky Center for Clinical and Translational Science PI: Philip A. Kern Co-PI(s)/Co-I(s): Nathan Jacobs and many others Sponsor: National Institutes of Health (NIH) Total Award: \$28,893,663 Duration: 2021–2026
- 6. CCT: Context and Colorization for Tracking (Phase 2)
 PI: Nathan Jacobs
 Sponsor: Intelligent Automation Inc. / Defense Advanced Research Projects Agency (DARPA)
 Total Award: \$200,000
 Duration: 2020–2021
- 7. GeoSearch: Image-based Geolocation using Rank Aggregated Hash Index (Phase 2, direct) PI: Nathan Jacobs
 Sponsor: Intelligent Automation Inc. / National Geospatial-Intelligence Agency (NGA) Total Award: \$250,000
 Duration: 2021-2023
- 8. Spatio-Temporal Association and Curve Kernel Networks (STACKNet) PI: Nathan Jacobs Sponsor: Intelligent Automation Inc. Total Award: \$483,000 (Phase 1 and 2) Duration: 2020–2023

- 9. ToFENet: Topographic Feature Extraction Network
 - PI: Nathan Jacobs

Sponsor: Intelligent Automation Inc. / National Geospatial-Intelligence Agency (NGA) Total Award: \$19,944 (Phase 1), \$249,988 (Phase 2), \$153,261 (Phase 3, Year 1) Duration: 2018–2022

Grants (completed)

- Video to Feature Data Association and Geolocation
 PI: Nathan Jacobs
 Sponsor: Novateur Research Solutions / National Geospatial-Intelligence Agency (NGA)
 Total Award: \$29,503 (Phase 1), \$149,883 (Phase 2)
 Duration: 2018–2021
- 2. CAREER: Learning and Using Models of Geo-Temporal Appearance PI: Nathan Jacobs Sponsor: National Science Foundation (NSF) Total Award: \$499,426 Duration: 2016–2021
- R01: Monomeric G-proteins and Cardioprotection from Heart Failure PI: John Satin Co-PI(s)/Co-I(s): Douglas Andres, Ahmed Abdel-Latif, Nathan Jacobs, Peter Kekenes-Huskey Sponsor: National Institutes of Health (NIH) Total Award: \$1,575,279 Duration: 2016–2020
- 4. Group Travel Grant for the Doctoral Consortium to be Held in Conjunction with IEEE Conference on Computer Vision and Pattern Recognition
 PI: Nathan Jacobs
 Sponsor: National Science Foundation (NSF)
 Total Award: \$22,500
 Duration: 2019–2020
- DLALA: Deep Learning for Airborne LiDAR Analysis PI: Nathan Jacobs Sponsor: Orbital Insight Total Award: \$104,927 Duration: 2019–2020
- 6. Listening to Markets: A Temporal Convolutional Net (TCN) Analysis of Conservatism in Company Reporting PI: Dan Stone
 Co-PI(s)/Co-I(s): Nathan Jacobs, Mark Lauersdorf, Hong Xie
 Sponsor: University of Kentucky
 Total Award: \$33,315
 Duration: 2018–2019
- 7. Calibrated Pose Regression Networks
 PI: Nathan Jacobs
 Sponsor: The Design Knowledge Company / Air Force Research Lab (Wright-Patterson AFB)
 Total Award: \$155,700 (Phase 3)
 Duration: 2018–2019

- 8. Group Travel Grant for the PhD Forum to be Held in Conjunction with IEEE Winter Conference on Applications of Computer Vision
 PI: Nathan Jacobs
 Sponsor: National Science Foundation (NSF)
 Total Award: \$13,625
 Duration: 2018–2019
- 9. ASER Multi Center Review of Blunt Splenic Trauma: Optimal CT Diagnosis, Characterization PI: James Lee (Radiology)
 Co-PI(s)/Co-I(s): David Nickels, Nathan Jacobs, Emily Slade
 Sponsor: American Society of Emergency Radiology
 Total Award: \$5,000
 Duration: 2018–2019
- Mechanism of a Novel Stable Compensatory Cardiac Hypertrophy Model PI: Jonathan Satin Co-PI(s)/Co-I(s): Douglas Andres, Nathan Jacobs, Moriel Vandsburger Sponsor: American Heart Association Total Award: \$154,000 Duration: 2016–2018
- NIP: GeoLookbook: Modeling Worldwide Human Visual Appearance PI: Nathan Jacobs Sponsor: National Geospatial-Intelligence Agency (NGA) Total Award: \$299,204 Duration: 2014–2018
- 12. Crossview ConvNets for Near/Remote Sensing PI: Nathan Jacobs Sponsor: Google Total Award: \$46,209 Duration: 2016–2017
- 13. WALDO: Wide Area Localization of Depicted Objects
 PI: Nathan Jacobs
 Sponsor: Object Video / Intelligence Advanced Research Projects Activity (IARPA)
 Total Award: \$373,395
 Duration: 2012–2016
- 14. CSSG: ContextualEyes: A Context-Aware Surveillance System PI: Nathan Jacobs Sponsor: Defense Advanced Research Projects Agency (DARPA) Total Award: \$743,131 Duration: 2011–2015
- 15. Image-Net: Discriminatory Imaging and Network Advancement for Missiles, Aviation, and Space PI: Brent Seales Co-PI(s)/Co-I(s): Ken Calvert, James Griffioen, Jane Hayes, Nathan Jacobs, Victor Marek, Thomas Seigler, Suzanne Smith, Miroslaw Truszczynski, Ruigang Yang Sponsor: United States Army Space and Missile Defense Command / United States Army Forces Strategic Command Total Award: \$2,092,905 Duration: 2011–2012

Donations

1. Google Cloud Compute Research (Sponsor: Google	Credits Amount/Value: \$5,000	PI: Nathan Jacobs Date: Aug 2018
2. <i>NVIDIA Titan X GPU</i> Sponsor: NVIDIA	Amount/Value: \$778	PI: Nathan Jacobs Date: Oct 2016
3. AWS Research Education Grant Sponsor: Amazon	Amount/Value: \$5,000	PI: Nathan Jacobs Date: Jul 2015
4. NVIDIA Tesla K40 GPU Sponsor: NVIDIA	Amount/Value: \$3,900	PI: Nathan Jacobs Date: Dec 2014

5 Talks

- 1. "A Structure-Aware Method for Direct Pose Estimation", Jan 2022, IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI
- 2. Panelist for "Non-Traditional Careers in Computer Science" hosted by the ACM-W, Nov 2021, University of Kentucky, Lexington, KY
- 3. "Mapping the Visual World Using Webcams, Cell Phones, and Satellites", Oct 2021, Washington University in St. Louis, MO
- 4. "Learning Geo-Temporal Scene Models from Webcams, Cell Phones, and Satellites" (Keynote), Oct 2021, International Workshop on Distributed Smart Cameras, an ICCV Workshop (virtual)
- 5. "Mapping the Visual World Using Webcams, Cell Phones, and Satellites", Dec 2020, University of Campinas, Unicamp, Brazil (virtual)
- 6. "Exploring the Intersection of Localization, Mapping, and Image Understanding" (Keynote), Aug 2020, ECCV Workshop on Long-Term Visual Localization (virtual)
- 7. "Deep Convolutional Neural Networks: Foundations to Frontiers (a 2-day short course)", Mar 2020, Brazilian Space Agency (INPE), Sao Jose dos Campos, Brazil
- 8. "What, Where, and When: Mapping the World Using Webcams, Cell Phones, and Satellites", Mar 2020, Brazilian Space Agency (INPE), Sao Jose dos Campos, Brazil
- 9. "Learning to Map Visual Appearance", Feb 2020, Keeping Current Seminar, University of Kentucky (Computer Science), Lexington, KY
- 10. "Learning to Map Visual Appearance", Jan 2020, Wageningen University, Netherlands
- 11. "What, Where, and When: Mapping the World Using Webcams, Cell Phones, and Satellites", Nov 2019, University of Kentucky (Forestry), Lexington, KY
- 12. "Learning to Map the Visual World", Jul 2019, Wright State University, Dayton, OH
- 13. "Understanding Places Using Ground-Level and Overhead Views" (Keynote), May 2019, Kentucky Geological Society (Annual Symposium), Lexington, KY
- 14. "Understanding Places Using Ground-Level and Overhead Views", Feb 2019, Notre Dame University, South Bend, IN

- 15. "A Generative Model of Worldwide Facial Appearance" (Keynote), Jan 2019, Workshop on Demographic Variations in Performance of Biometric Algorithms, Waikoloa Village, HI
- 16. "A Generative Model of Worldwide Facial Appearance", Jan 2019, IEEE Winter Conference on Applications of Computer Vision, Waikoloa Village, HI
- 17. "A Weakly Supervised Approach for Estimating Spatial Density Functions from High-Resolution Satellite Imagery", Nov 2018, ACM SIGSPATIAL, Seattle, WA
- "Understanding Places Using Ground-Level and Overhead Views", Oct 2018, Commonwealth Computational Summit, Lexington, KY
- 19. "GeoLookbook: Modeling Worldwide Human Visual Appearance (Year 4)", Sep 2018, National Academy of Sciences (IC Academic Research Symposium), Washington, DC
- 20. "Understanding Places Using Ground-Level and Overhead Views", Aug 2018, Oak Ridge National Lab, Oak Ridge, TN
- 21. "WhatGoesWhere: Predicting Object Distributions from Above", Jul 2018, IGARSS, Valencia, Spain
- 22. "Building World Models for Situated Training and Planning", May 2018, Air Force Science and Technology 2030 Workshop, Bloomington, IN
- 23. "Recent Advances in Image Understanding", May 2018, DASC, Lexington, KY
- 24. "(Tutorial) Recent Advances in Deep Learning: Fusing Overhead and Ground-Level Views for Remote Sensing", April 2018, USGIF Annual Symposium, Tampa, FL
- 25. "Understanding Places Using Ground-Level and Overhead Views", Feb 2018, CVPR Area Chair Meeting, Toronto, Canada
- 26. "GeoLookbook: Modeling Worldwide Human Visual Appearance (Year 3)", Sep 2017, National Academy of Sciences (IC Academic Research Symposium), Washington, DC
- 27. "GPU Accelerated Computer Vision, Remote Sensing, and Machine Learning", Aug 2017, Kentucky Geological Service, Lexington, KY
- 28. "Fusing Overhead and Ground-Level Imagery to Improve Scene Understanding", Jul 2017, Planet, San Francisco, CA
- 29. "Learning about When and Where from Imagery", Jun 2017, Orbital Insight, Mountain View, CA
- 30. "(Tutorial) Recent Advances in Deep Learning: Fusing Overhead and Ground-Level Views for Remote Sensing", Jun 2017, USGIF Annual Symposium, San Antonio, TX
- "How Computers See People (extended)", May 2017, CCTS Biomedical Informatics Seminar Series, Lexington, KY
- 32. "Understanding Places Using Ground-Level and Overhead Views", May 2017, Midwest Vision Meeting, Chicago, IL
- 33. "How Computers See People", Feb 2017, Suds'n'Science Speaker Series, West Sixth Brewing, Lexington, KY
- 34. "Learning about When and Where from Imagery", Feb 2017, University of Missouri, Department of Computer Science
- 35. "Localization, Mapping, and Image Understanding", Feb 2017, USGIF Machine Learning Symposium

- 36. "Deep Convolutional Neural Networks: Concepts and Examples (in Computer Vision", Nov 2016, University of Kentucky, Society of Industrial and Applied Mathematics
- 37. "Crossview Convolutional Networks", Oct 2016, Applied Imagery and Pattern Recognition, Washington, D.C.
- "GeoLookbook: Modeling Worldwide Human Visual Appearance (Year 2)", Sep 2016, National Academy of Sciences (IC Academic Research Symposium), Washington, DC
- 39. "Deep Convolutional Neural Networks: Concepts and Examples", Jul 2016, University of Kentucky: Systems Biology and Omics Integration Seminar
- 40. "Crossview Methods for Localization and Mapping", Jun 2016, IEEE CVPR Workshop on "Vision from Satellite to Street" (invited talk)
- 41. "A Fast Method for Estimating Transient Scene Properties", Mar 2016, Winter Conference on Applications of Computer Vision, Lake Placid, NY
- 42. "Novel Cues for Geocalibration", Feb 2016, Indiana University, Bloomington, IN
- 43. "Novel Cues for Camera Geocalibration", Jan 2016, Uber Advanced Technology Center, Pittsburgh, PA
- 44. "Novel Cues for Geocalibration: Cloudy Days, Rainbows, and More", Oct 2015, Carnegie Mellon University, Pittsburgh, PA
- 45. "Using Geotagged Internet Imagery to Understand the World", Sep 2015, Université Laval, Quebec City, Canada
- 46. "face2gps: Estimating Geographic Location from Facial Features", Sep 2015, International Conference on Image Processing, Quebec City, Canada
- 47. "GeoLookbook: Modeling Worldwide Human Visual Appearance", Sep 2015, National Academy of Sciences (IC Academic Research Symposium), Washington, DC
- 48. "Exploring the Geo-Dependence of Human Face Appearance", Mar 2014, Winter Conference on Applications of Computer Vision, Steamboat Springs, CO
- 49. "Estimating Cloudmaps from Outdoor Image Sequences", Mar 2014, Winter Conference on Applications of Computer Vision, Steamboat Springs, CO
- 50. "Scene Geometry from Several Partly Cloudy Days", Oct 2013, International Conference on Distributed Smart Cameras, Palm Springs, CA
- 51. "Unlocking the Potential of the Global Network of Outdoor Webcams", Apr 2013, Rochester Institute of Technology
- 52. "Geo-temporal Computer Vision: Applications to the NGA", Nov 2011, National Geospatial-Intelligence Agency
- 53. "Geo-temporal Computer Vision: Applications to the Army", Oct 2011, Army Research Lab
- 54. "Localizing, Calibrating, and Using Thousands of Outdoor Webcams", Feb 2011, University of North Carolina– Charlotte
- 55. "Using Clouds Shadows to Infer Scene Structure and Camera Calibration", Jun 2010, CVPR, San Francisco, CA
- 56. "Passive Vision and The Power of Collective Imaging", Apr 2010, Object Video Inc., Reston, VA
- 57. "Localizing, Calibrating, and Using Thousands of Outdoor Webcams", Apr 2010, University of Kentucky

- 58. "Time-Lapse Vision: Localizing, Calibrating, and Using Thousands Outdoor Webcams", Apr 2010, Google, Mountain View, CA
- 59. "Passive Vision and The Power of Collective Imaging", Jan 2010, Google, Mountain View, CA
- 60. "Incorporating Domain Constraints in Urban Vehicle Tracking", Nov 2010, University of Missouri, Columbia, MO
- 61. "Compressive Sensing and Differential Image-Motion Estimation", Mar 2010, ICASSP, Dallas, TX
- 62. "The Global Network of Outdoor Webcams: Properties and Applications ", Nov 2009, ACM GIS, Seattle, WA
- 63. "Passive Vision: The Global Webcam Imaging Network", Oct 2009, AIPR, Washington, DC
- 64. "Calibrating and Using the Global Network of Outdoor Webcams", Aug 2009, ICDSC, Italy
- 65. "Adventures in Archiving and Using Three Years of Webcam Images", Jun 2009, CVPR Workshop on Internet Vision, Miami, FL
- 66. "Recent Work: Webcams and Grooves", Aug 2009, Object Video, Reston, VA
- 67. "Location-Specific Models for Tracking", Jan 2008, WMVC, Copper Mountain, CO
- 68. "Using natural cues to geo-locate and geo-orient distributed cameras", Jan 2008, VISN, Copper Mountain, CO
- 69. "Foreground Modeling: The Shape of Things That Came", Feb 2007, WMVC, Austin, Texas

6 Service

University Service

- Washington University in St. Louis (2022–)
 - 2022-: Research Council, Taylor Geospatial Institute
- University of Kentucky (2010–2022)
 - 2021-2022: University of Kentucky, Institute for Biomedical Informatics: Steering Committee
 - 2019–2022: University of Kentucky, Computer Science Department: Executive Committee
 - 2019–2022: University of Kentucky, College of Engineering: Master Planning/Space Committee
 - 2018–2019, 2020–2022: University of Kentucky, College of Engineering: Research Advisory Committee
 - 2020-2022: University of Kentucky, College of Engineering: Graduate Studies Team
 - 2013–2017, 2018–2022: University of Kentucky, Computer Science Department: Faculty Search Committee
 - 2020-2021: University of Kentucky, Computer Science Department: Chair Search Committee
 - 2020: University of Kentucky, College of Engineering: Recruiting Advisory Committee
 - 2018–2019: University of Kentucky, University Senate (Academic Facilities Committee, Technology Committee)
 - 2017: University of Kentucky, Member (Information Technology Task Force for Research Enablement and Outreach)
 - 2015–2016: University of Kentucky, Computer Science Department: ABET Committee
 - 2010–2012, 2015–2016: University of Kentucky, Computer Science Department: Media and Outreach

- 2013: University of Kentucky, Center for Visualization and Virtual Environment: Director Search Committee
- 2013: University of Kentucky, Computer Science Department: Chair Search Committee
- 2012–2013: University of Kentucky, Computer Science Department: Curriculum Development Committee
- 2012–2013, 2015: University of Kentucky, Engineering Day (oral presentation and/or software demonstration)

Professional Service

- Area Chair:
 - European Conference on Computer Vision (ECCV) [2022]
 - IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [2018, 2019, 2021, 2022]
 - IEEE Winter Conference on Applications of Computer Vision (WACV) [2014, 2022 (round 2), 2023]
- Organizing Committees:
 - IEEE/ISPRS Workshop on Large Scale Computer Vision for Remote Sensing Imagery (EARTHVISION) [2019, 2020, 2021]
 - Doctoral Consortium Co-Chair: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [2017, 2019]
 - Doctoral Consortium Chair: IEEE Winter Conference on Applications of Computer Vision (WACV) [2018, 2022]
 - Video Proceedings Chair: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [2015]
 - IEEE Workshop on Motion and Video Computing (WMVC) [2011]
- Guest Editor:
 - IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (J-STARS) [2021], Special Issue "Integrating User Generated Contents for Remote Sensing Applications"
 - Elsevier Computer Vision and Image Understanding (CVIU) [2019], Special Issue "Computer Vision for Remote Sensing"
- Session Chair:
 - IEEE International Geoscience and Remote Sensing Symposium (IGARSS) [2020]
 - IEEE/ISPRS Workshop on Large Scale Computer Vision for Remote Sensing Imagery (EARTHVISION) [2019]
 - IEEE Winter Conference on Applications of Computer Vision (WACV) [2016, 2019, 2022]
 - IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [2018]
 - IEEE/ACM International Conference on Distributed Smart Cameras [2013]
- Reviewing for Journals:
 - IEEE Transactions on Geoscience and Remote Sensing [2020]
 - ISPRS Journal of Photogrammetry and Remote Sensing [2020]
 - IEEE Transactions on Pattern Analysis and Machine Intelligence [2011, 2011, 2012, 2018, 2019]
 - ISPRS Journal of Photogrammetry and Remote Sensing [2019]
 - IEEE Transactions on Geoscience and Remote Sensing [2017]

- IEEE Transactions on Multimedia [2011, 2016]
- Elsevier Computer Vision and Image Understanding [2010, 2013, 2016×2]
- IEEE Transactions on Computational Imaging [2016]
- IEEE Journal on Selected Topics in Remote Sensing [2015]
- Springer Machine Vision and Applications [2014]
- IEEE Sensors [2014]
- Elsevier Image and Vision Computing [2013]
- IEEE Transactions on Circuits and Systems for Video Technology [2007, 2008, 2009, 2010, 2011]
- IEEE Computer Graphics and Applications [2010]
- IEEE Transactions on Aerospace and Electronic Systems [2010]
- Elsevier Computers and Electronics in Agriculture [2010]
- Cartography and Geographic Information Science [2010]
- Program Committee / Reviewer for:
 - Conferences
 - * International Conference on Learning Representations (ICLR) [2022]
 - * IEEE Winter Conference on Applications of Computer Vision (WACV) [2021]
 - * IEEE International Geoscience and Remote Sensing Symposium (IGARSS) [2020]
 - * British Machine Vision Conference (BMVC) [2020]
 - * IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [2006–2017, 2020]
 - * European Conference on Computer Vision (ECCV) [2010, 2014, 2020]
 - * Neural Information Processing Systems (NeurIPS) [2010-2012, 2020]
 - * AAAI Conference on Artificial Intelligence (AAAI) [2020]
 - * IEEE International Conference on Computer Vision (ICCV) [2007, 2009, 2019, 2021]
 - * Asian Conference on Computer Vision (ACCV) [2010, 2016]
 - * IEEE International Conference on Robotics and Automation (ICRA) [2016]
 - * International Conference on Machine Learning (ICML) [2012]
 - * IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS) [2010]
 - Workshops
 - * IEEE/ISPRS Workshop on Large Scale Computer Vision for Remote Sensing Imagery (EARTHVI-SION) [2017, 2019, 2020]
 - * CVPR Workshop on Photogrammetric Computer Vision [2019]
 - * CVPR Workshop on DeepGlobe Satellite Challenge [2018]
 - * ACM International Workshop on Geotagging and Its Applications [2013]
 - * ICCV Workshop on Computer Vision for Converging Perspectives [2013]
 - * IEEE Workshop on Applications of Computer Vision [2012–2013]
 - * ECCV Workshop on Visual Analysis and Geo-Localization of Large-Scale Imagery [2012]
 - * ACM Workshop on Geotagging and Its Applications in Multimedia [2012]
 - * IEEE Workshop on Motion and Video Computation [2009–2011]
- Reviewing for Funding Agencies:
 - Panelist for NSF Information and Intelligent Systems Division [2019]

- Panelist for NSF Information and Intelligent Systems Division [2018]
- Panelist for NSF Information and Intelligent Systems Division [2017]
- Panelist for NSF Division of Industrial Innovation and Partnerships [2016]
- Panelist for NSF Information and Intelligent Systems Division [2016]
- Panelist for NSF Information and Intelligent Systems Division [2015]
- External reviewer for NSF Information and Intelligent Systems Division [2015]
- External reviewer for Fonds de recherche du Quebec [2014]

Memberships

- Senior Member: Institute of Electrical and Electronics Engineers
- Full Member: British Machine Vision Association and Society for Pattern Recognition
- Affiliate Member: International Association of Pattern Recognition

7 Teaching and Mentoring

Courses Taught

The following list summarizes the traditional, classroom courses I have taught:

- Introduction to Machine Learning, CS 460g, [F2012, F2013, F2014, F2016, F2018, F2019], University of Kentucky
- Computer Vision, CS 636, [S2011, S2013, S2017], University of Kentucky
- Learning-Based Methods for Computer Vision, CS 585/685, [S2015], University of Kentucky
- Advanced Topics in Computer Science: Machine Learning, CS 685, [S2012], University of Kentucky
- Intermediate Topics in Computer Science: Computational Photography, CS 585, [F2010, F2011], University of Kentucky
- Theory of Computation, CECS 341, [F2002], University of Missouri

The following list summarizes the independent study courses (UKy CS 395 or 612) I have supervised:

- F2019, "Applied Deep Learning"
- S2019, "Applied Deep Learning" (×5)
- F2018, "Applied Deep Learning" (×5)
- S2018, "Applied Deep Learning" (×4)
- F2017, "Applied Deep Learning"
- F2016, "Applied Deep Learning" (×6)
- S2016, "Applied Deep Learning: Understanding Urban Areas"
- S2015, "Understanding Real-Estate Imagery"
- F2014, "Recent Techniques in Machine Learning" (×4)

- F2014, "Learning-Based Methods for Background Subtraction"
- F2014, "A Novel Approach for Category-Level Object Detection from Partial Pose Estimation of Symmetric Objects"
- S2013, "Extracting Geo-Temporal Image Appearance Patterns from Flickr Imagery"
- S2013, "Automatic Camera Calibration Methods"
- S2013, "Deep-Learning Architectures for Computer Vision"
- F2012, "Automatic Image Geolocalization"
- S2012, "Image Calibration using Natural Scene Variations"
- F2011, "Practical Methods in Crowd Sourcing"

Mentoring

Postdoctoral Scholars

Dates: Jun 2020-present 1. Benjamin Brodie (Ph.D. Mathematics, University of Kentucky) Research Focus: Change Detection, Object Tracking, Re-Identification, Metric Learning

Ph.D. Students

- 1. Paul Mihail [primary advisor, co-chair w/ Goldsmith] Degree: Ph.D., Computer Science Title: Visualizing and Predicting the Effects of Rheumatoid Arthritis on Hands Date: May 2014 Employment: Associate Professor, Computer Science, Valdosta State University
- 2. Mohammad T. Islam Degree: Ph.D., Computer Science Title: Analyzing the Geo-Dependence of Human Face Appearance and Its Applications Date: Jul 2016 Employment: Associate Professor, Computer Science, Southern Connecticut State University
- 3. Hamid Hamraz Degree: Ph.D., Computer Science Title: Computational Forest Modeling using Airborne Remote Sensing LiDAR Date: Apr 2018 Employment: Computational and Data Scientist, Microsoft
- 4. Scott Workman Degree: Ph.D., Computer Science Title: Leveraging Overhead Imagery for Localization, Mapping, and Understanding Date: Apr 2018 Employment: Research Scientist, DZYNE Technologies
- 5. Menghua "Ted" Zhai Degree: Ph.D., Computer Science Title: Deep Probabilistic Models for Camera Geo-Calibration Date: Dec 2018 Employment: Computer Vision Engineer, MatrixTime (startup)
- 6. Zach Bessinger Degree: Ph.D., Computer Science Title: Modeling and Mapping Location-Dependent Human Appearance Employment: Applied Scientist, Zillow
- 7. Tawfiq Salem Degree: Ph.D., Computer Science Title: Learning to Map the Visual and Auditory World Date: Jul 2019 Employment: Visiting Assistant Professor, Computer and Information Technology, Purdue University

Date: Dec 2018

8.	Gongbo Liang Title: Clinical-Inspired Multi-Modal Deep Learning Medical Imaging An Employment: Assistant Professor, Computer Science, Eastern Kentucky U	Degree: Ph.D., Computer Science alysis Date: Oct 2020 University
9.	Usman Rafique [primary advisor, <i>co-chair</i> w/ Cheung] Title: Weakly Supervised Learning for Multi-Image Synthesis Employment: Research Scientist, Kitware Inc.	Degree: Ph.D., Electrical Engineering Date: Jul 2021
10.	Hunter Blanton Title: Revisiting Absolute Pose Regression Employment: Senior Computer Vision Engineer, Yembo (startup)	Degree: Ph.D., Computer Science Date: Aug 2021
11.	Connor Greenwell Title: Probabilistic Cross-Domain Representation Learning	Degree: Ph.D., Computer Science Date: May 2022 (est)
12.	Yu Zhang Title: Multimodal Domain Generalization	Degree: Ph.D., Computer Science Date: May 2022 (est)
13.	Virgil Barnard Title: TBD [Cryptography and Machine Learning]	Degree: Ph.D., Computer Science Date: Jun 2022 (est)
14.	Xin Xing [primary advisor, <i>co-chair</i> w/ Lin] Title: TBD [Medical Imaging and Attention]	Degree: Ph.D., Computer Science Date: Jun 2023 (est)
15.	Subash Khanal [primary advisor, <i>co-chair</i> w/ Lin] Title: TBD [Multimodal Medical Imaging]	Degree: Ph.D., Computer Science Date: Jun 2023 (est)
16.	Aram Ansary Ogholbake Title: TBD [Remote Sensing, Change Detection]	Degree: Ph.D., Computer Science Date: Dec 2023 (est)
17.	Adib Mosharrof Title: TBD [Image Geolocalization]	Degree: Ph.D., Computer Science Date: Dec 2023 (est)
18.	Oscar Skean [secondary advisor, <i>co-chair</i> w/ Sanchez-Giraldo] Title: TBD [Information-Theoretic Metric Learning]	Degree: Ph.D., Computer Science Date: Dec 2023 (est)
Mas	ters Students	
1.	Feiyu Shi Title: Principal Component Analysis For Multi-size Images Employment: Senior Software Engineer, Microsoft	Degree: MS, Computer Science Date: Dec 2013
2.	Ryan Baltenberger Title: Estimating Transient Scene Attributes Using Deep Convolutional N Employment: Computer Vision Research Engineer, Badger Technologies	Degree: MS, Computer Science leural Networks Date: May 2016
3.	William "Derek" Jones [secondary advisor, <i>co-chair</i> w/ Ellingson] Title: Scalable Feature Selection and Extraction with Applications in Kina 2018	Degree: MS, Computer Science ase Polypharmacology Date: May
	Employment: Research Data Scientist, Lawrence Livermore National Lab	poratory, ATOM
4.	Weilian "William" Song Title: Image-Based Roadway Assessment using Convolutional Neural Ne	Degree: MS, Computer Science tworks Date: May 2019

Employment: Ph.D. student, Simon Fraser University

5.	Armin HadzicDegree:Title: Estimating Free-Flow Speed with LiDAR and Overhead ImageryEmployment: Machine Learning Research Scientist, DZYNE Technologies	MS, Computer Science Date: May 2020
6.	David JonesDegree:Title: Intensity Harmonization for Airborne LiDARDegree:	MS, Computer Science Date: May 2021
7.	Jacob BirgeDegree:Title: A Cost-Sensitive Approach To Multimodal Fusion	MS, Computer Science Date: Dec 2021
Und	ergraduate Research Students	
1.	Jim Knochelmann Title: User-Tools for Aerial Image Registration	Dates: 2011-2012
2.	Kyle Kolpek Title: Aerial Image Registration	Dates: 2012
3.	Noora Aljabi Title: Using Flickr to Map Phenological Trends	Dates: 2013
4.	J. David Smith Title: User-in-the-loop Camera Calibration	Dates: 2013-2015
5.	Angelo Stekardis Title: Understanding Facial Expressions	Dates: 2014–2015
6.	Ryan Baltenberger Title: Understanding Outdoor Scene Appearance	Dates: 2012-2015
7.	Connor Greenwell Title: Interactive Methods for Aerial Imagery Understanding	Dates: 2014–2016
8.	Sam Davidson Title: Applications of Generative Adversarial Networks to Social Media Imagery	Dates: 2016–2017
9.	Aaron Mueller Title: Deep Learning for Educational Data	Dates: 2018
10.	Weilian Song Title: Applications of Deep Convolutional Neural Networks to Geometric Computer Vis	Dates: 2016–2019
11.	Yuhan Long Title: Deep Learning for Medical Imaging	Dates: 2019
12.	Thomas Barber Title: Deep Learning for Remote Sensing	Dates: 2019
13.	Sean Grate Title: Deep Learning for Point Clouds	Dates: 2019–2020
14.	Shashank Bhatt Title: TBD	Dates: 2020-2022
15.	Cohen Archbold Title: TBD	Dates: 2020-2022

16. Evan Bolton Title: Generating Synthetic Training Data using a Game Engine	Dates: 2021
17. Julia Stekardis Title: Large-Scale Image Geo-Localization	Dates: 2021–2022
 Gareth Walker Title: Remote Sensing for Social Good 	Dates: 2022
19. Matthew Mitchell Title: Remote Sensing for Social Good	Dates: 2022
High School Research Students	
1. Ryan Baltenberger Title: Gesture-Based User Interaction with the Microsoft Kinect	Dates: 2011–2012
 Alex Lucas Title: Evaluation of Automatic Face Detection Methods 	Dates: 2014–2013
3. Andrew Tapia Title: Estimating Surface Reflectivity	Dates: 2014–2015
4. Andrew Albrecht Title: Mapping Social Media Imagery	Dates: 2016–2017
 C. J. Labianca Title: Evaluation of Optimization Algorithms for Deep Convolutional Neural Networks 	Dates: 2016–2017
 Ryan Landry Title: RRADCL: Rapid Roadway Assessment with Deep Convolutional Learning 	Dates: 2017–2018
 Cohen Archbold Title: Photo-Geolocation using Convolutional Neural Networks 	Dates: 2017–2018
8. Nicole Wong Title: Learning-Based View Synthesis	Dates: 2019–2020
 Chris Wang Title: Multimodal Medical Imaging for Alzheimer's Disease Classification 	Dates: 2019–2021
10. William Greenlee Title: TBD	Dates: 2021-present
11. Krishna Bhatraju Title: TBD	Dates: 2021-present

Graduate Committees (as regular member or external examiner)

1.	Edwin Prem Kumar Sathiyamoorthy	Degree: MS, Electrical Engineering
	Role: member	Date: Mar 2011
	Title: Global Change Reactive Background Subtraction	
2.	Ju Shen	Degree: Ph.D., Electrical Engineering
	Role: member	Date: May 2014
	Title: Computational Multimedia for Video Self Modeling	

3.	Hasan Sajid Role: member Title: A Universal Background Subtraction System	Degree: MS, Electrical Engineering Date: Jul 2014
4.	Chenxi Zhang Role: member Title: Depth-assisted Image Segmentation, Enhancement and Visualization	Degree: Ph.D., Computer Science Date: Dec 2014
5.	Mao Ye Role: member Title: 3D Reconstruction and Motion Analysis of Deformable Objects wit	Degree: Ph.D., Computer Science Date: Dec 2014 h Consumer Depth Cameras
6.	Yan Huang Role: member Title: Novel Computational Methods for Transcript Reconstruction and Qu	Degree: Ph.D., Computer Science Date: Dec 2014 uantification using RNA-SEQ Data
7.	Shaoceng Wei Role: outside examiner Title: Multi-state Models for Interval Censored Data with Competing Risk	Degree: Ph.D., Statistics Date: May 2015
8.	Bo Fu Role: member Title: Towards Intelligent Telerobotics: Visualization and Control of Remo	Degree: Ph.D., Computer Science Date: May 2015 ote Robot
9.	Harikrishnan Unnikrishnan I Role: member Title: Analysis of Vocal Fold Kinematics using High Speed Video	Degree: Ph.D., Electrical Engineering Date: Dec 2015
10.	Sean Karlage Role: member Title: Diachronic Volume Registration for Analysis of Antiquities	Degree: MS, Computer Science Date: May 2016
11.	Hasan Sajid I Role: member Title: Robust Background Subtraction for Moving Cameras and their App	Degree: Ph.D., Electrical Engineering Date: Jul 2016 lications in Ego-vision Systems
12.	Stanley Rosenbaum Role: member Title: A method for presenting volume and color of 3D objects via audio f	Degree: MS, Computer Science Date: Dec 2016 for the visually impaired
13.	DhiShankar Bhattacharya Role: member Title: Analyzing Sybil Attacks and Similar Phenomena in Twitter Data	Degree: MS, Computer Science Date: Apr 2017
14.	Wesley Hough Role: outside examiner Title: On Independence, Matching, and Homomorphism Complexes	Degree: Ph.D., Computer Science Date: May 2017
15.	Qingguo Xu Role: member Title: 3D Body Tracking using Deep Learning	Degree: MS, Computer Science Date: May 2017
16.	Xiaofei Zhang Role: member Title: Mammogram and Tomosynthesis Classification Using Convolutiona	Degree: MS, Computer Science Date: Jul 2017 al Neural Networks

17.	Yajie Zhao Role: member Title: 3D Human Face Reconstruction and 2D Appearance Synthesis	Degree: Ph.D., Computer Science Date: Dec 2017
18.	Po-Chang Su Role: member Title: Real-time Capture and Rendering of Physical Scene with an Effic work	Degree: Ph.D., Electrical Engineering Date: Dec 2017 ciently Calibrated RGB-D Camera Net-
19.	Anthony Rios Role: member Title: Deep Neural Networks for Multi-Label Text Classification: App Records	Degree: Ph.D., Computer Science Date: Jun 2018 plication to Coding Electronic Medical
20.	Ethan Welty (University of Colorado–Boulder) Role: member Title: High-Precision Photogrammetry for Glaciology	Degree: Ph.D., Environmental Studies Date: Jul 2018
21.	Yannick Hold-Geoffroy (Laval University, Quebec, CA) Role: member Title: Learning Geometric and Lighting priors from Natural Images	Degree: Ph.D., Computer Science Date: Aug 2018
22.	Nkiruka Uzuegbunam Role: member Title: Self-Image Multimedia Technologies for Feedforward Observation	Degree: Ph.D., Electrical Engineering Date: Oct 2018 nal Learning
23.	Nam Vo (Georgia Institute of Technology) Role: member Title: Image Geolocalization with Deep Learning	Degree: Ph.D., Computer Science Date: May 2019
24.	Jinping Zhuge Role: outside examiner Title: Boundary layers in periodic homogenization	Degree: Ph.D., Math Date: May 2019
25.	Ryan Zembrodt Role: member Title: Open-World Story Generation with Sequence-to-Sequence and H Models	Degree: MS, Computer Science Date: May 2019 ierarchical Recurrent Encoder-Decoder
26.	Jonathan Dingess Role: member Title: Epsilon-Superposition and Truncation Dimension in Average and P Linear Problems	Degree: MS, Computer Science Date: May 2019 Probabilistic Settings for Infinite-Variate
27.	Genghis Goodman Role: member Title: A Machine Learning Approach to Artificial Floorplan Generation	Degree: MS, Computer Science Date: Jul 2019
28.	Xinxin Zuo Role: member Title: Depth Enhancement and Surface Reconstruction with RGB-D seq	Degree: Ph.D., Computer Science Date: Oct 2019 juence
29.	Sifei Han Role: member Title: Text Mining Methods for Analyzing Online Health Information ar	Degree: Ph.D., Computer Science Date: Dec 2019 nd Communication

30.	Shivangi Srivastava (Wageningen University, Netherlands) Role: member Title: Mapping of urban landuse and landcover with multiple sen deep learning	Degree: Ph.D., Computer Science Date: Feb 2020 nsors: joining close and remote sensing with
31.	Raian Maretto (National Institute for Space Research) Role: member Title: Deep Learning techniques applied to classification of Remot	Degree: Ph.D., Geoinformation Science Date: Feb 2020 te Sensing Images
32.	Kyle Helfrich Role: member Title: Orthogonal Recurrent Neural Networks and Batch Normaliz	Degree: Ph.D., Math Date: Apr 2020 action in Deep Neural Networks
33.	Subash Khanal Role: member Title: Mispronunciation Detection and Diagnosis in Mandarin Acc	Degree: MS, Electrical Engineering Date: May 2020 cented English Speech
34.	Narjes Bozorg Role: member Title: Articulatory-Wavenet: Deep Autoregressive Model for Acou	Degree: Ph.D., Electrical Engineering Date: Nov 2020 astic-to-Articulatory Inversion
35.	Céline Portenier (University of Bern) Role: external referee Title: High-resolution snow cover retrieval using public webcams	Degree: Ph.D., Computer Science Date: May 2021
36.	Ahmed Nassar (IRISA, Université Bretagne Sud, Vannes) Role: external referee Title: Learning to map street-side objects using multiple views	Degree: Ph.D., Computer Science Date: May 2021
37.	Alireza Shirvani Role: member Title: Personality and Emotion for Virtual Characters in Strong-sto	Degree: Ph.D., Computer Science Date: Aug 2021 ory Narrative Planning
38.	Sajad Javadinasab Hormozabad Role: member Title: Artificial Intelligence and Soft Computing in Smart Structur	Degree: Ph.D., Civil Engineering Date: Nov 2021 ral Systems
39.	Chengxi Li Role: member Title: Supporting Stylized Language Models using Multi-Modality	Degree: Ph.D., Computer Science Date: Mar 2022 y Features
40.	Tarannum Shaila Zaman Role: member Title: An Automated Framework to Debug System-Level Concurre	Degree: Ph.D., Computer Science Date: Apr 2022 ency Failures
41.	David Adeniji Role: member Title: Establishing a Digital Process Twin for Aerospace Alloy Mac and Physics Embedded Machine Learning Models	Degree: Ph.D., Mechanical Engineering Date: Apr 2022 chining using In-situ Process Characterization
42.	Eike Jens Hoffmann (Technical University of Munich) Degra Role: reviewer Title: Predicting Building Functions on Large Scale by Fusing Soc	ee: Ph.D., Data Science in Earth Observation Date: Jun 2022 cial Media and Remote Sensing Data

43.	Arnab Sarkar Role: member Title: Understanding the Physics of Galaxy Clusters Out to their Virial R	Degree: Ph.D., Physics Date: Aug 2022 adii and Beyond
44.	Md Sultan Al Nahian Role: member Title: Value Aligned AI Agent with Explainability	Degree: Ph.D., Computer Science Date: in progress
45.	Sidrah Liaqat Role: member Title: Model-based Deep Learning Techniques for Detecting Behaviors from Video	Degree: Ph.D., Electrical Engineering Date: in progress Related to Autism Spectrum Disorder
46.	Stephen Parsons Role: member Title: TBD	Degree: Ph.D., Computer Science Date: in progress
47.	Minoo Hosseinzadeh Role: member Title: TBD	Degree: Ph.D., Computer Science Date: in progress
48.	Ashutosh Timilsina Role: member Title: TBD	Degree: Ph.D., Computer Science Date: in progress
49.	Sheng-Chieh Lin Role: member Title: TBD	Degree: Ph.D., Physics Date: in progress
50.	Seth Parker Role: member Title: TBD	Degree: Ph.D., Computer Science Date: in progress