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People often think about computer vision from the perspective, “Given an image, understand something
about it.” However, this ignores contextual information that is often available with an image. My work
explores ways to improve image-understanding systems by incorporating such context.

Theme 1: Relating Appearance, Time, and Location

The appearance of an outdoor scene changes for many reasons, including the time of day, the weather, and
the turning of seasons. My view is that these changes should be explicitly modeled. I often refer to this as
geo-temporal appearance modeling.

Much of my work has focused on developing algorithms that extract temporal patterns in sequences of
images from static outdoor cameras. This work began when, as a graduate student, I helped build the Archive
of Many Outdoor Scenes (AMOS) [1], which today contains over a billion images from thousands of outdoor
webcams. I have used this imagery to: create models of scene appearance variations [1]; develop novel
algorithms for camera localization [2] and video surveillance [3, 4]; evaluate novel methods for estimating
and mapping weather conditions [5, 6, 7]; and measure leaf growth on trees [8]. I also developed algorithms
that use cloud motion to estimate scene geometry and camera calibration [9, 10, 11, 12].

My recent work has explored how additional sources of data can help improve our geo-temporal appear-
ance models. We have now used many different sources, including: ground-level panoramas; vector GIS
data; overhead imagery (satellite or aerial); airborne and ground-based LiDAR, social media imagery and
text; weather reports; and field audio recordings.

Cross-View Visual Appearance Mapping Social media imagery, which often comes geotagged and
timestamped, provides billions of high-resolution samples of the world. We have developed approaches
that predict features extracted from social media imagery using overhead imagery as input, what we call
cross-view mapping [13]. We have used this idea for mapping scene categories [14, 15], scenicness or nat-
ural beauty [16], soundscapes [17], object distributions [18], and land use [19]. We have also used it to
learn useful features for image localization [20] and remote sensing [21]. Our most recent work extends
cross-view mapping to include dependence on when an image was captured [22]. We show how the trained
model can be used for the image forensics task of metadata verification (i.e., does the scene appearance
seem plausible for the purported location and time?) and shown how to improve the performance on this
task using discriminative training [23].

Image Geo-Localization Knowing where an image was captured makes the information extracted from
it more useful, but the location isn’t always available. Given this, estimating the location from imagery
has become an important task. My early work focused on estimating the location of a webcam using nat-
ural appearance variations across many images [2, 24]. We have also developed methods for single-image
localization using either overhead [14, 15] or ground-level imagery [25] as reference data. We extended
our work with overhead imagery to the problem of simultaneous orientation and location estimation [21],
proposing a novel architecture that learns the spatial transformation between the overhead and ground-level
viewpoint. A side benefit is that the network also learns to transfer semantics from ground-level imagery
to overhead imagery. We also proposed a novel localization architecture [20] which enables simultaneously
solving the problems of 1) estimating image capture location (with and without known capture time) and



2) image capture time (with and without known capture location). More recently, we showed how our
dynamic visual appearance mapping method [22], which we also used for image forensics, results in sig-
nificant improvements for localization. Most of this work has focused on coarse localization, but we have
also begun developing novel approaches for fine-grained localization [26]. Our focus has been on develop-
ing non-blackbox methods for absolute pose regression, which have the speed/simplicity of neural network
approaches but many of the interpretability advantages of classical approaches.

Camera Calibration Knowing the direction a given image pixel is viewing is also important, but this
requires camera calibration, which is often not available. My early work focused on methods suitable for
webcams, when it is not feasible to physically access or manipulate the camera. I proposed an innovative
approach that uses the appearance of the sky on a clear day to determine the geo-orientation of the cam-
era [27]. This was one of the first works to use a sky appearance model developed for graphics applications
to aid in outdoor scene understanding, now common practice [28, 29, 30]. I proposed a method for estimat-
ing the absolute camera orientation and focal length that uses cloud motion [31]. I demonstrated how a solar
refractive phenomenon (i.e., a rainbow) can be used to estimate the focal length of the camera and, given a
video of a rainbow, provide a constraint on the geographic location of the camera [32].

More recently, we have also developed algorithms for (rough) single-image calibration, including esti-
mating focal length [33] and horizon lines [34, 35]. As part of this, we introduced the Horizon Lines in the
Wild dataset, which remains one of the standard evaluation datasets for single-image horizon-line estimation.

Data-Driven View Synthesis The problem of view synthesis, estimating the appearance of a scene from a
new viewpoint, is a central task in geometric computer vision. Our first work on this problem was in predict-
ing the appearance of a ground-level panorama from an overhead image [21], an extreme viewpoint shift.
This led to work on synthesizing an overhead view from imagery captured by an autonomous vehicle [36].
Both of these problem settings have since received significant attention from the community. More recently,
we are developing methods for less extreme viewpoint shifts, such as between pairs of panoramas. Our first
work in this direction, Generative Appearance Flow [37], performs as well as state-of-the-art approaches but
doesn’t require known depth at training time. We have since extended this to support synthesizing across
illumination conditions and seasons [38]. Our upcoming work will explore alternative architectures and
fusing of multiple modalities.

Theme 2: Remote Sensing

I have also been working directly on problems in remote sensing. Our first work in this domain proposed a
novel method for semantic segmentation of overhead imagery that incorporates features from ground-level
imagery [39], addressing the task of fine-grained building labeling. We have a series of papers focused
on understanding roadways, each of which proposes a novel neural network architecture. We estimated
roadway safety, and many other safety-related attributes, from panoramas [40] and average roadway speeds
both from overhead imagery [41] and from a fusion of overhead imagery and LiDAR [42]. In our most
recent work, we estimate the location of roadways, their direction of travel, and how expected traffic speeds
vary throughout the week [43]. We have also worked on environmental applications, such as detecting
deforestation [44], counting tree crowns [45], and classifying sinkholes [46]. We are also exploring the use of
deep learning for applications in astrophysics, where our first work shows the promise of this approach [47].

This research area has also motivated some novel network training strategies. We developed an approach
for training a network to predict pixel-level labels using only polygon level annotations [48], detect building
boundaries using only bounding-box annotations [49], learn to detect clouds with no manual annotations [50,
51], and recover occluded regions in airborne LiDAR scans [52].



Theme 3: Medical Imaging

While I have worked on medical imaging in various ways for many years [53, 54, 55, 56], I have recently
been focused on developing neural network architectures for breast cancer classification. Our first work
showed the potential for neural network-based techniques [57]. We have made numerous improvements and
our current architecture is now able to use the full 2D and 3D mammograms [58], significantly improving
performance over the previous method which subsampled the 3D volume.

A key challenge in adopting such techniques is whether or not the clinicians will trust the system. We
evaluated claims that neural-network based approaches achieved human-level performance, and found they
did not withstand scrutiny [59, 60], likely due to the extreme differences between the public datasets and
images used in clinical practice. As part of our effort to address the issue, we recently proposed a novel
method for network calibration [61] which addresses the problem of model overconfidence. This approach
is potentially applicable to a wide range of image classification problems.

More recently, we have turned our focus to the problem of limited training datasets, which arises due to
the cost of obtaining manual annotations. Our first work in this direction [62], adapts a self-training approach
for the task of breast cancer localization. This means a clinician only needs to provide a categorical label
for the image, not a polygon or pixel-level label. We have also been developing general-purposes methods
for domain adaptation [63], which we plan to adapt to the medical domain to reduce the need to annotate
images for every scanner type/setting.

Summary

My research, rooted in the fundamentals of computer vision, has been dramatically affected by recent ad-
vances in neural networks. Because of this, it is now feasible to make impactful contributions across many
domains using essentially the same set of tools. The key to building useful systems is working closely with
experts that understand the unique features of the domain, developing architectures that are tailored to the
domain, and employing sound engineering practices. A key benefit in working in several domains is seeing
what problems are shared. Many of my basic research contributions have been inspired by such observa-
tions. For additional information about these, or other projects not mentioned here, please feel free to reach
out to me or consult my lab webpage.
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